10.1 Tangents to Circles

Goals • Identify segments and lines related to circles.

• Use properties of a tangent to a circle.

VOCABULARY

Circle The set of all points in a plane that are equidistant from a given point, called the center of the circle

Radius The distance from the center of a circle to a point on the circle. A segment whose endpoints are the center of the circle and a point on the circle.

Congruent circles Two circles that have the same radius

Diameter The distance across a circle, through its center. A chord that passes through the center of the circle.

Chord A segment whose endpoints are points on the circle

Secant A line that intersects a circle in two points

Tangent A line that intersects a circle in exactly one point

Tangent circles Coplanar circles that intersect in one point

Concentric Coplanar circles that have a common center

Common tangent A line or segment that is tangent to two coplanar circles

Interior of a circle All points of the plane that are inside a circle

Exterior of a circle All points of the plane that are outside a circle

Point of tangency The point at which a tangent line intersects the circle to which it is tangent

Example 1 Identifying Special Segments and Lines

Tell whether the line or segment is best described as a chord, a secant, a tangent, a diameter, or a radius of \odot C.

a. CG b. EG

Solution

- **a.** CG is a <u>radius</u> because C is the center and G is a point on the circle.
- **b.** EG is a <u>diameter</u> because it contains the center C.
- **c.** \overrightarrow{AD} is a tangent because it intersects the circle at one point.

c. AD

THEOREM 10.1

If a line is tangent to a circle, then it is perpendicular to the radius drawn to the point of tangency. If ℓ is tangent to $\odot Q$ at *P*, then $\ell \perp \overline{QP}$.

THEOREM 10.2

In a plane, if a line is perpendicular to a radius of a circle at its endpoint on the circle, then the line is tangent to the circle.

If $l \perp \overline{QP}$ at *P*, then l is tangent to $\bigcirc Q$.

THEOREM 10.3

If two segments from the same exterior point are tangent to a circle, then they are congruent.

If \overrightarrow{SR} and \overrightarrow{ST} are tangent to $\bigcirc P$, then $\underline{SR} \cong \underline{ST}$.

 \mathbf{O}

Example 2 Finding the Radius of a Circle

You are standing at R, 4 feet from a fountain. The distance from you to a point of tangency on the fountain is 8 feet. What is the radius of the fountain?

Solution

Tangent \overrightarrow{QR} is perpendicular to radius \overrightarrow{PQ} at Q, so $\triangle PQR$ is a right triangle. So, you can use the Pythagorean Theorem.

 $(r + 4)^2 = r^2 + 8^2$ Pythagorean Theorem $r^2 + 8r + 16 = r^2 + 64$ Square of binomial $8r = \underline{48}$ Subtract r^2 and 16 from each side. $r = \underline{6}$ Divide.

Answer The radius of the fountain is $\underline{6}$ feet.

Example 3 Using Pr	operties of Tangents
\overrightarrow{AB} is tangent to \odot C a \odot C at D. Find the value	at B. \overrightarrow{AD} is tangent to ue of x. $x^2 + 24$ • C
Solution	
AB = AD	Use Theorem 10.3. A 49 B
$49 = x^2 + 24$	Substitute.
<u>25</u> = x^2	Subtract 24 from each side.
$\pm 5 = x$	Find the square roots of 25 .

Checkpoint Complete the following exercise.

1. \overrightarrow{AB} is tangent to $\bigcirc C$ at *B*. \overrightarrow{AD} is tangent to $\bigcirc C$ at *D*. Find the value of *x*.

3 or -3

