10.6 Equations of Circles

Goals • Write the equation of a circle.

• Use the equation of a circle and its graph to solve problems.

VOCABULARY

Standard equation of a circle: A circle with radius *r* and center (h, k) has this standard equation: $(x - h)^2 + (y - k)^2 = r^2$.

Example 1 Writing a Standard Equation of a Circle

Write the standard equation of the circle with center (0, 6) and radius 3.6.

 $(x - h)^{2} + (y - k)^{2} = r^{2}$ Standard equation of a circle $(x - 0)^{2} + (y - 6)^{2} = 3.6^{2}$ Substitute. $x^{2} + (y - 6)^{2} = 12.96$ Simplify.

Example 2 Writing a Standard Equation of a Circle

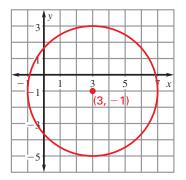
The point (-1, 1) is on a circle whose center is (-3, 4). Write the standard equation of the circle.

Find the radius. The radius is the distance from the point (-1, 1) to the center (-3, 4).

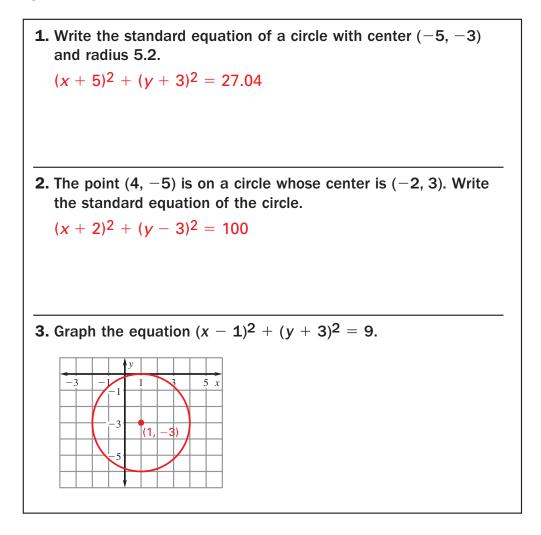
 $r = \sqrt{(-3 - (\underline{-1}))^2 + (\underline{4} - 1)^2}$ Use the Distance Formula. $r = \sqrt{(\underline{-2})^2 + \underline{3}^2}$ Simplify. $r = \sqrt{\underline{13}}$ Simplify.

Substitute (h, k) = (-3, 4) and $r = \sqrt{13}$ into the standard equation of a circle.

 $(x - (\underline{-3}))^2 + (y - \underline{4})^2 = (\underline{\sqrt{13}})^2$ Standard equation of a circle $(x + \underline{3})^2 + (y - \underline{4})^2 = \underline{13}$ Simplify.


Example 3 Graphing a Circle

The equation of a circle is $(x - 3)^2 + (y + 1)^2 = 16$. Graph the circle.


Rewrite the equation to find the center and radius:

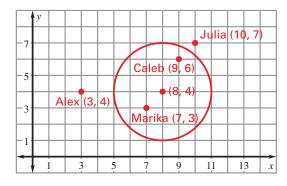
$$(x-3)^2 + (y+1)^2 = 16$$

 $(x - 3)^2 + [y - (\underline{-1})]^2 = \underline{4}^2$ The center is $(\underline{3}, \underline{-1})$ and the radius is $\underline{4}$. To graph the circle, place the point of a compass at $(\underline{3}, \underline{-1})$, set the radius at $\underline{4}$ units, and swing the compass to draw a full circle.

Checkpoint Complete the following exercises.

Example 4 Applying Graphs of Circles

Skydiving A skydiving instruction school has a field with multiple landing targets. Each target is circle shaped. A coordinate plane is used to arrange the targets in the field, with the corner of the field as the origin. The equation $(x - 8)^2 + (y - 4)^2 = 9$ represents one of the targets.


- a. Graph the landing target.
- **b.** The landing spots by the following skydivers are located as follows: Marika is at (7, 3), Alex is at (3, 4), Julia is at (10, 7), and Caleb is at (9, 6). Which skydivers landed on the target?

Solution

a. Rewrite the equation to find the center and radius:

$$(x - 8)^2 + (y - 4)^2 = 9$$

 $(x - 8)^2 + (y - 4)^2 = 3^2$

The center is $(\underline{8}, \underline{4})$ and the radius is $\underline{3}$. Graph the circle below.

b. Graph the landing spots of the skydivers. The graph shows that Marika and Caleb both landed on the target.