Areas of Regular Polygons

- **Goals** Find the area of an equilateral triangle.
 - · Find the area of a regular polygon.

VOCABULARY

Center of a polygon The center of a polygon is the center of its circumscribed circle.

Radius of a polygon The radius of a polygon is the radius of its circumscribed circle.

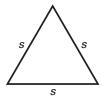
Apothem of a polygon The apothem of a polygon is the distance from the center of the polygon to any side of the polygon.

Central angle of a regular polygon A central angle of a regular polygon is an angle whose vertex is the center and whose sides contain two consecutive vertices of the polygon.

THEOREM 11.3: AREA OF AN EQUILATERAL TRIANGLE

The area of an equilateral triangle is one fourth the square of the length of the side times $\sqrt{3}$.

$$A = \frac{1}{4}\sqrt{3}s^2$$



Find the area of an equilateral triangle with 12 inch sides.

Solution

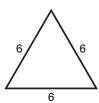
Use s = 12 in the formula from Theorem 11.3.

$$A = \frac{1}{4}\sqrt{3}s^2 = \frac{1}{4}\sqrt{3}(\underline{12}^2) = \frac{1}{4}(\underline{144})\sqrt{3} = \underline{36\sqrt{3}}$$
 in.²

Answer The area is $36\sqrt{3}$ square inches, or about 62.4 square inches.

Checkpoint Find the area of the triangle.

1.



$$9\sqrt{3} \approx 15.6$$

2.

$$28\sqrt{3} \approx 48.5$$

THEOREM 11.4: AREA OF A REGULAR POLYGON

The area of a regular n-gon with side length s is half the product of the apothem a and the perimeter P.

$$A = \frac{1}{2} \underline{aP}$$
 or $A = \frac{1}{2} \underline{a} \cdot \underline{ns}$

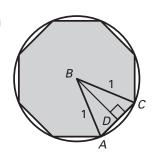
Example 2

Finding the Area of a Regular Polygon

A regular octagon is inscribed in a circle with radius 1 unit. Find the area of the octagon.

Solution

To apply the formula for the area of a regular octagon, find its apothem and perimeter.



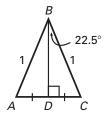
To find the measure of the central angle of a regular polygon, divide 360° by its number of sides.

The measure of central $\angle ABC$ is 45 °.

In isosceles triangle $\triangle ABC$, the altitude BD bisects $\angle \underline{ABC}$ and side \underline{AC} . So, $m\angle DBC = \underline{22.5}$ °. In right triangle $\triangle BDC$, you can use trigonometric ratios to find the lengths of the legs.

$$\cos \ \underline{\frac{22.5}{BC}}^{\circ} = \frac{BD}{BC} = \frac{BD}{1} = \underline{BD}$$

$$\sin \ \underline{22.5}^{\circ} = \ \frac{CD}{|BC|} = \frac{CD}{|1|} = \underline{CD}$$



So, the apothem is $a = BD = \cos 22.5^{\circ}$.

The perimeter is $P = 8(\underline{AC}) = 8(2 \cdot \underline{CD}) = \underline{16 \sin 22.5^{\circ}}$.

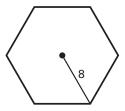
The area of the octagon is

$$A = \frac{1}{2} \underline{aP} = \frac{1}{2} (\underline{\cos 22.5^{\circ}}) (\underline{16 \sin 22.5^{\circ}}) \approx \underline{2.83}.$$

Answer The area of the octagon is about 2.83 square units.

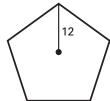
Checkpoint Find the area of the regular polygon.

3.



96 $\sqrt{3}$ ≈ 166.28 sq. units

4.



720 cos 36° sin 36° \approx 342.38 sq. units