12.3 Surface Area of Pyramids and Cones

Goal • Find the surface area of a pyramid and of a cone.

VOCABULARY

Pyramid A pyramid is a polyhedron in which the base is a polygon and the lateral faces are triangles with a common vertex. The intersection of two lateral faces is a lateral edge. The intersection of the base and a lateral face is a base edge. The altitude, or height, of the pyramid is the perpendicular distance between the base and the vertex.

Regular pyramid A regular pyramid has a regular polygon for a base and its height meets the base at its center. The slant height of a regular pyramid is the altitude of any lateral face. A nonregular pyramid does not have a slant height.

Circular cone or cone A circular cone, or cone, has a circular base and a vertex that is not in the same plane as the base. The altitude, or height, is the perpendicular distance between the vertex and the base.

Right cone In a right cone, the height meets the base at its center and the slant height is the distance between the vertex and a point on the base edge.

Lateral surface of a cone The lateral surface of a cone consists of all segments that connect the vertex with points on the base edge.

Example 1 Finding the Area of a Lateral Face

A regular pyramid is considered a regular polyhedron only if all its faces, including the base, are congruent. So, the only pyramid that is a regular polyhedron is the regular triangular pyramid, or tetrahedron.

Find the area of each lateral face of the regular pyramid shown at the right.

Solution

To find the slant height of the pyramid, use the Pythagorean Theorem.

(Slant height)² = $h^2 + \left(\frac{1}{2}s\right)^2$

 $(Slant height)^2 = 97^2 + 45^2$

Slant height = $\sqrt{11,434}$

Slant height \approx 106.93

 $(Slant height)^2 = 11,434$

h = 97 mslant height s = 90 m $\frac{1}{2}s$

Write formula.

Substitute.

Simplify.

Take the positive square root.

Use a calculator.

Answer So, the area of each lateral face is

```
\frac{1}{2}(base of lateral face)(slant height), or about \frac{1}{2}(\underline{90})(\underline{106.93}),
```

```
which is about <u>4812</u> square meters.
```

Checkpoint Complete the following exercise.

THEOREM 12.4: SURFACE AREA OF A REGULAR PYRAMID

The surface area S of a regular pyramid is $S = B + \frac{1}{2}Pl$, where

B is the area of the base, *P* is the perimeter of the base, and *I* is the slant height.

.18 in.

 $4\sqrt{3}$ in.

 $4\sqrt{3}$ in.

8 in.

8 in.

Example 2 Finding the Surface Area of a Pyramid

To find the surface area of the regular pyramid shown, start by finding the area of the base.

Use the formula for the area of a regular

polygon, $\frac{1}{2}$ (apothem)(perimeter).

A diagram of the base is shown at the right. After substituting, the area of the base is

$$\frac{1}{2}(4\sqrt{3})(6 \cdot \underline{8})$$
, or $\underline{96}\sqrt{3}$ square inches.

Now you can find the surface area, using $\frac{96}{\sqrt{3}}\sqrt{3}$ for the area of the base, *B*.

$$S = B + \frac{1}{2}PI$$

$$= \frac{96}{\sqrt{3}} + \frac{1}{2}(\underline{48})(\underline{18})$$

$$= \frac{96}{\sqrt{3}} + \frac{432}{432}$$

$$\approx \underline{598.3}$$
Write formula.
Substitute.
Use a calculator.
With the surface area is about 598.3 square inches.

THEOREM 12.5: SURFACE AREA OF A RIGHT CONE

The surface area S of a right cone is

 $S = \pi r^2 + \pi r l ,$

where *r* is the radius of the base and *l* is the slant height.

Example 3 Finding the Surfa	ce Area of a Right Cone
To find the surface area of the shown, use the formula for the	right cone
$S = \pi r^2 + \pi r l$	Write formula.
$= \pi(\underline{3})^2 + \pi(\underline{3})(\underline{5})$	Substitute.
$=$ <u>9</u> π + <u>15</u> π	Simplify.
= <u>24</u> π	Add.
Answer The surface area is 24π square meters, or about 75.4 square meters.	

Checkpoint Find the surface area of the solid. Round your result to two decimal places.

