12.4 Volume of Prisms and Cylinders

- **Goals** Use volume postulates.
 - Find the volumes of prisms and cylinders.

VOCABULARY

Volume of a solid The volume of a solid is the number of cubic units contained in the solid's interior.

POSTULATE 27: VOLUME OF A CUBE

The volume of a cube is the cube of the length of its side, or $V = s^3$.

POSTULATE 28: VOLUME CONGRUENCE POSTULATE

If two polyhedra are congruent, then they have the same volume.

POSTULATE 29: VOLUME ADDITION POSTULATE

The volume of a solid is the **sum** of the volumes of all its nonoverlapping parts.

THEOREM 12.6: CAVALIERI'S PRINCIPLE

If two solids have the same height and the same cross-sectional area at every level, then they have the same volume.

THEOREM 12.7: VOLUME OF A PRISM

The volume V of a prism is V = Bh, where B is the area of a base and h is the height.

THEOREM 12.8: VOLUME OF A CYLINDER

The volume V of a cylinder is $V = Bh = \pi r^2 h$, where B is the area of a base. h is the height, and r is the radius of a base.

Find the volume of the right prism and the right cylinder.

a.

b.

Solution

a. The area B of the base is $\frac{1}{2}(\underline{1})(\underline{3})$, or $\underline{\frac{3}{2}}$ ft². Use h = 2 to find the volume.

$$V = Bh = \frac{3}{2}(\underline{2}) = \underline{3} \text{ ft}^3$$

b. The area *B* of the base is $\pi \cdot \underline{5}^2$, or $\underline{25} \pi$ m². Use h = 6 to find the volume.

$$V = Bh = _{25}\pi(6) = _{150}\pi \approx _{471.24}m^3$$

Checkpoint Find the volume of the solid. Round your result to two decimal places.

1. Right prism

220 m³

2. Right cylinder

1017.88 ft³

Example 2

Using Volumes

Use the measurements given to solve for x.

a. Cube,

$$V = 90 \text{ ft}^3$$

b. Right cylinder,

 $V = 1253 \text{ m}^3$

Solution

a. A side length of the cube is *x* feet.

 $V = s^3$ Formula for volume of cube

 $90 = x^3$ Substitute.

4.48 $\approx x$ Take the cube root.

Answer So, the height, width, and length of the cube are about 4.48 feet.

b. The area of the base is πx^2 square meters.

V = Bh Formula for volume of cylinder

1253 = πx^2 (10) Substitute.

 $1253 = 10 \pi x^2$ Rewrite.

 $39.88 \approx x^2 \qquad \qquad \text{Simplify.}$

6.32 ≈ *x* Find the positive square root.

Answer So, the radius of the cylinder is about 6.32 meters.