

- **Goals** Find and use the scale factor of similar solids.
 - Use similar solids to solve real-life problems.

VOCABULARY

Similar solids Two solids with equal ratios of corresponding linear measures, such as heights or radii, are called similar solids.

Example 1 Identifying Similar Solids

Decide whether the two solids are similar. If so, compare the volumes of the solids.

Solution

a. The solids are not similar because the ratios of corresponding linear measures are not equal, as shown.

b. The solids are similar because the ratios of corresponding linear measures are equal, as shown. The solids have a scale factor of 2:1.

lengths:
$$\frac{10}{5} = \frac{2}{1}$$
 widths: $\frac{6}{3} = \frac{2}{1}$ heights: $\frac{14}{7} = \frac{2}{1}$
The volume of the larger prism is $V = Bh = \frac{60}{(14)} = \frac{840}{15}$.
The volume of the smaller prism is $V = Bh = \frac{15}{(7)} = \frac{105}{105}$.
The ratio of side lengths is $2:1$ and the ratio of volumes is $\frac{840:105}{105}$, or $8:1$.

Checkpoint Decide whether the two solids are similar.

THEOREM 12.13: SIMILAR SOLIDS THEOREM

If two similar solids have a scale factor of a : b, then corresponding areas have a ratio of $a^2 : b^2$, and corresponding volumes have a ratio of $a^3 : b^3$.

Example 2

Using the Scale Factor of Similar Solids

Cylinders A and B are similar with a scale factor of 2:5. Find the surface area and volume of cylinder *B* given that the surface area of cylinder A is 96π square feet and the volume of cylinder A is 128π cubic feet.

Solution

Begin by using Theorem 12.13 to set up two proportions.

Surface area of A _ a ²	Volume of A _ a ³
Surface area of $B = b^2$	Volume of B <mark>b³</mark>
$\frac{96\pi}{\text{Surface area of }B} = \frac{4}{25}$	$\frac{128\pi}{\text{Volume of }B} = \frac{8}{125}$
Surface area of $B = 600\pi$	Volume of $B = 2000\pi$

Answer The surface area of cylinder *B* is 600π square feet and the volume of cylinder *B* is 2000π cubic feet.

Example 4

Comparing Similar Solids

Two punch bowls are similar with a scale factor of 2:3. The amount of concentrate to be added is proportional to the volume. How much concentrate does the smaller bowl require if the larger bowl requires 48 ounces?

Solution

Using the scale factor, the ratio of the volume of the smaller punch bowl to the larger punch bowl is

$$\frac{a^3}{b^3} = \frac{2^3}{3^3} = \frac{8}{27} \approx \frac{1}{3.4}.$$

The ratio of the volumes of the concentrates is about $1: \underline{3.4}$. The amount of concentrate for the smaller punch bowl can be found by multiplying the amount of concentrate for the larger punch bowl by

$$\frac{1}{3.4} \text{ as follows: } \frac{48}{3.4} \left(\frac{1}{3.4} \right) \approx \frac{14.1}{3.4} \text{ ounces.}$$

Answer The smaller bowl requires about <u>14.1</u> ounces of concentrate.