2.5 Proving Statements about Segments

- **Goals** Justify statements about congruent segments.
 - Write reasons for steps in a proof.

VOCABULARY

Theorem A theorem is a true statement that follows as a result of other true statements.

Two-column proof A two-column proof is a type of proof written as numbered statements and reasons that show the logical order of an argument.

Paragraph proof A paragraph proof is a type of proof written in paragraph form.

THEOREM 2.1 PROPERTIES OF SEGMENT CONGRUENCE

For any segment AB, $\overline{AB} \cong \overline{AB}$. Reflexive

Symmetric If $\overline{AB} \cong \overline{CD}$, then $\overline{CD} \cong \overline{AB}$.

If $\overrightarrow{AB} \cong \overrightarrow{CD}$, and $\overrightarrow{CD} \cong \overrightarrow{EF}$, then $\overrightarrow{AB} \cong \overrightarrow{EF}$. **Transitive**

Example 1

Transitive Property of Segment Congruence

You can prove the Transitive Property of Segment Congruence as follows.

Given: $\overline{JK} \cong \overline{MN}, \overline{MN} \cong \overline{PQ}$

Prove: $\overline{JK} \cong \overline{PQ}$

Statements

1.
$$\overline{JK} \cong \overline{MN}, \overline{MN} \cong \overline{PQ}$$

$$\mathbf{2.}\,\mathsf{JK}=\mathsf{MN},\mathsf{MN}=\mathsf{PQ}$$

$$3. JK = PQ$$

4.
$$\overline{JK} \cong \overline{PQ}$$

Reasons

- 1. Given
- **2.** Definition of congruent segments
- 3. Transitive property of equality
- 4. Definition of congruent segments

Example 2 Using Congruence

Use the diagram and the given information to complete the proof.

Prove: $\overline{PS} \cong \overline{OR}$

Statements	Reasons
1. $\overline{PQ}\cong\overline{RS}$	1. Given
2. $\overline{PQ} \cong \overline{QR}$	2. Given
3. $\overline{RS}\cong \overline{QR}$	3. Transitive Property of Congruence
4. $\overline{PS}\cong \overline{RS}$	4. Given
5. $\overline{PS}\cong \overline{QR}$	5. Transitive Property of Congruence

Example 3

Using Segment Relationships

In the diagram, AC = CE and AB = DE. Show that C is the midpoint of \overline{BD} .

Solution

Given: AC = CE, AB = DE

Prove: C is the midpoint of BD.

<u>S</u>	ta	te	m	e	n	ts

- 1. AC = CE
- 2. AB + BC = AC
- **3.** AB + BC = CE
- 4. CD + DE = CE
- **5.** AB + BC = CD + DE
- 6. AB = DE
- 7. AB + BC = CD + AB
- 8. BC = CD
- 9. $\overline{BC} \cong \overline{CD}$
- **10.** *C* is the midpoint of *BD*.

Reasons

- 1. Given
- 2. Segment Addition Postulate
- 3. Transitive Property of Equality
- 4. Segment Addition Postulate
- **5.** Transitive Property of Equality
- 6. Given
- 7. Substitution Property of Equality
- 8. Subtraction Property of **Equality**
- 9. Definition of congruent segments
- **10.** Definition of midpoint

Checkpoint Complete the following exercise.

1. In the diagram, AB = DE and BC = CD. Complete the proof to show that C is the midpoint of \overline{AE} .

Given: AB = DE, BC = CD

Prove: \overline{C} is the midpoint of \overline{AE} .

Statements

1. AB = DE

2.
$$AB + BC = DE + BC$$

3.
$$BC = CD$$

$$4. AB + BC = DE + CD$$

5.
$$AB + BC = AC$$

$$6. AC = DE + CD$$

7.
$$CD + DE = CE$$

8.
$$AC = CE$$

9.
$$\overline{AC} \cong \overline{CE}$$

10. C is the midpoint of \overline{AE} .

Reasons

- 1. Given
- **2.** Addition Property of Equality
- 3. Given
- 4. Substitution Property of Equality
- **5.** Segment Addition Postulate
- **6.** Transitive Property of Equality
- 7. Segment Addition Postulate
- 8. Transitive Property of Equality
- 9. Definition of congruent segments
- **10.** Definition of midpoint