# **Troving Statements about Angles**

- **Goals** Use angle congruence properties.
  - Prove properties about special pairs of angles.

#### **THEOREM 2.2 PROPERTIES OF ANGLE CONGRUENCE**

Angle congruence is reflexive, symmetric, and transitive.

For any angle A,  $\angle A \cong \angle A$ . Reflexive

Symmetric If  $\angle A \cong \angle B$ , then  $\angle B \cong \angle A$ .

Transitive If  $\angle A \cong \angle B$  and  $\angle B \cong \angle C$ , then  $\angle A \cong \angle C$ .

#### Example 1 `

#### **Using the Transitive Property**

In the diagram at the right,  $\angle 1 \cong \angle 5$ ,  $\angle$ 5  $\cong$   $\angle$ 3, and  $m\angle$ 1 = 103°. What is the measure of  $\angle$ 3? Explain your reasoning.



#### Solution

Because  $\angle 1 \cong \angle 5$  and  $\angle 5 \cong \angle 3$ , you can use the Transitive Property of Congruence to conclude that  $\angle 1 \cong \angle 3$ .

Because congruent angles have the same measure, you can conclude that  $m\angle 3 = m\angle 1 = 103^{\circ}$ .

**Answer** The measure of  $\angle 3$  is  $103^{\circ}$ .

#### Checkpoint Use the diagram from Example 1.

**1.** Given that  $\angle 4 \cong \angle 6$ ,  $\angle 6 \cong \angle 8$ , and  $m\angle 8 = 77^{\circ}$ , what is the measure of  $\angle$ 4? Explain your reasoning.

77°; Using the Transitive Property of Congruence,  $\angle 4 \cong \angle 8$ . Because  $m\angle 8 = 77^{\circ}$ ,  $m\angle 4 = 77^{\circ}$ .

#### **THEOREM 2.3 RIGHT ANGLE CONGRUENCE THEOREM**

All right angles are congruent.

#### **THEOREM 2.4 CONGRUENT SUPPLEMENTS THEOREM**

If two angles are supplementary to the same angle (or to congruent angles), then they are <u>congruent</u>.





#### **THEOREM 2.5 CONGRUENT COMPLEMENTS THEOREM**

If two angles are complementary to the same angle (or to congruent angles), then the two angles are congruent.

If 
$$m\angle 4 + m\angle 5 = 90^{\circ}$$
 and  $m\angle 5 + m\angle 6 = 90^{\circ}$ , then  $\angle 4 \cong \angle 6$ .



### **Example 2** Proving Theorem 2.5

Given: ∠1 and ∠2 are complements, ∠3 and ∠4 are complements,

$$\angle 2 \cong \angle 4$$
 Prove:  $\angle 1 \cong \angle 3$ 



#### **Statements**

∠1 and ∠2 are complements,
∠3 and ∠4 are complements,
∠2 ≅ ∠4

2. 
$$m\angle 1 + m\angle 2 = 90^{\circ}$$
,  $m\angle 3 + m\angle 4 = 90^{\circ}$ 

3. 
$$m \angle 1 + m \angle 2 = m \angle 3 + m \angle 4$$

**4.** 
$$m\angle 2 = m\angle 4$$

5. 
$$m \angle 1 + m \angle 2 = m \angle 3 + m \angle 2$$

**6.** 
$$m \angle 1 = m \angle 3$$

#### Reasons

- 1. Given
- 2. Def. of complementary angles
- 3. Transitive property of equality
- **4.** Def. of congruent angles
- **5.** Substitution property of equality
- **6.** Subtraction property of equality
- 7. Def. of congruent angles

#### **POSTULATE 12 LINEAR PAIR POSTULATE**

If two angles form a linear pair, then they are <a href="supplementary">supplementary</a>.

$$m\angle 1 + m\angle 2 = 180^{\circ}$$



#### **THEOREM 2.6 VERTICAL ANGLES THEOREM**

Vertical angles are congruent.

$$\angle 1 \cong \angle 3$$
 and  $\angle 2 \cong \angle 4$ 



### **Example 3** Using Linear Pairs and Vertical Angles

In the diagram,  $\angle 3$  is a right angle and  $m \angle 5 = 57^{\circ}$ . Find the measures of  $\angle 1$ ,  $\angle 2$ ,  $\angle 3$ , and  $\angle 4$ .



#### **Solution**

By the definition of a right angle,  $m\angle 3 = 90^{\circ}$ .

 $\angle 2$  and  $\angle 5$  are vertical angles and  $m\angle 5 = 57^{\circ}$ , so  $m\angle 2 = \underline{57^{\circ}}$ .

 $\angle 1$  and  $\angle 5$  form a <u>linear pair</u>, so  $m\angle 1 + m\angle 5 = \underline{180^{\circ}}$ . When you substitute  $\underline{57^{\circ}}$  for  $m\angle 5$  and solve for  $m\angle 1$ , the result is  $m\angle 1 = \underline{123^{\circ}}$ .

 $\angle 4$  and  $\angle 5$  are <u>complementary</u>, so  $m\angle 4 + m\angle 5 = \underline{90^{\circ}}$ . When you substitute  $\underline{57^{\circ}}$  for  $m\angle 5$  and solve for  $m\angle 4$ , the result is  $m\angle 4 = \underline{33^{\circ}}$ .

## **Checkpoint** Complete the following exercises.

**2.** Find  $m \angle 1$  and  $m \angle 2$ .



 $m\angle 1 = 159^{\circ}, \, m\angle 2 = 148^{\circ}$ 

**3.** Find the measure of each angle.



46°, 134°