1. Fill in the blanks to complete the two column proof.

Given: $\angle 1$ and $\angle 2$ are complementary.

$$\angle 1 \cong \angle 3$$
, $\angle 2 \cong \angle 4$

Prove: $\angle 3$ and $\angle 4$ are complementary.

Statements	Reasons
1. $\angle 1$ and $\angle 2$ are complementary.	1
2	2. Definition of Complementary Angles
3. $\angle 1 \cong \angle 3, \angle 2 \cong \angle 4$	3. Given
4. <i>m</i> ∠1 = <i>m</i> ∠3, <i>m</i> ∠2 = <i>m</i> ∠4	4
5. $m \angle 3 + m \angle 2 = 90^{\circ}$	5
6	6. Substitution Property of Equality
7. $\angle 3$ and $\angle 4$ are complementary.	7

2.

Given: $\angle 1$ and $\angle 3$ are a linear pair. $\angle 2$ and $\angle 3$ are a linear pair.

Prove: $m \angle 1 = m \angle 2$

Statements	Reasons
 ∠1 and ∠3 are a linear pair. ∠2 and ∠3 are a linear pair. 	1
 ∠1 and ∠3 are supplementary. ∠2 and ∠3 are supplementary. 	
3. ∠1 ≅ ∠2	3
4. $m \angle 1 = m \angle 2$	4

Given: AB = BC

Prove: $\frac{1}{2}AC = BC$

Statements

Reasons

1.
$$AB = BC$$

$$2. AC = AB + BC$$

$$3. AC = BC + BC$$

4.
$$AC = 2BC$$

5.
$$\frac{1}{2}AC = BC$$

4. p. 121, #17