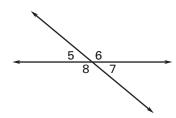
Practice B

For use with pages 109-116

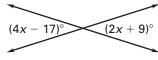

Use the diagram to decide whether the statement is true or false.

1. If
$$m \angle 5 = 42^{\circ}$$
, then $m \angle 6 = 48^{\circ}$.

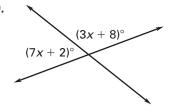
2. If
$$m \angle 5 = 42^{\circ}$$
, then $m \angle 7 = 42^{\circ}$.

3.
$$m \angle 5 + m \angle 7 = m \angle 6 + m \angle 8$$

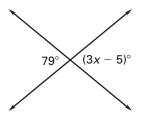
4.
$$m \angle 5 + m \angle 8 = m \angle 6 + m \angle 7$$



Make a sketch of the given information. Label all angles which can be determined.

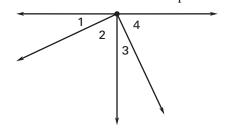

- **5.** Adjacent complementary angles where one angle measures 42°
- **7.** A linear pair of congruent angles

- **6.** Nonadjacent supplementary angles where where one angle measures 42°
- **8.** Vertical angles which measure 42°


Solve for x.

10.

11.



12. Give a reason for each step of the proof.

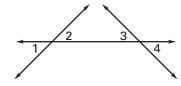
Given: $\angle 1$ and $\angle 2$ are complementary.

 $\angle 1 \cong \angle 3, \angle 2 \cong \angle 4$

Prove: $\angle 3$ and $\angle 4$ are complementary.

Statements

Reasons


- **1.** $\angle 1$ and $\angle 2$ are complementary.
- **2.** $m \angle 1 + m \angle 2 = 90^{\circ}$
- **3.** $\angle 1 \cong \angle 3, \angle 2 \cong \angle 4$
- **4.** $m \angle 1 = m \angle 3, m \angle 2 = m \angle 4$
- **5.** $m \angle 3 + m \angle 2 = 90^{\circ}$
- **6.** $m \angle 3 + m \angle 4 = 90^{\circ}$
- **7.** $\angle 3$ and $\angle 4$ are complementary.

- **1.** Given
- **2.** ?
- 3. Given
- **4.** ?
- ? 5.
- ?
- **7.** ?

13. Write a two-column proof.

Given: $\angle 2 \cong \angle 3$

Prove: $\angle 1 \cong \angle 4$

