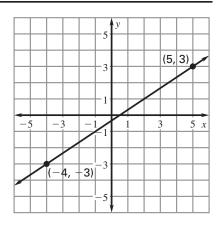
Parallel Lines in the **Coordinate Plane**

- **Goals** Find slopes of lines and use slope to identify parallel lines in a coordinate plane.
 - Write equations of parallel lines in a coordinate plane.

Example 1

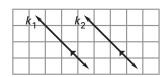
Finding the Slope of a Line

Find the slope of the line that passes through the points (-4, -3) and (5, 3).


Let
$$(x_1, y_1) = (\underline{-4}, \underline{-3})$$
 and $(x_2, y_2) = (\underline{5}, \underline{3})$.

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

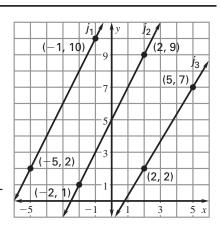
$$=\frac{\boxed{3}-\left(\boxed{-3}\right)}{\boxed{5}-\left(\boxed{-4}\right)}$$


$$= \frac{6}{9} = \frac{2}{3}$$

Answer The slope of the line is $\frac{2}{3}$.

POSTULATE 17: SLOPES OF PARALLEL LINES

In a coordinate plane, two nonvertical lines are parallel if and only if they have the same slope . Any two vertical lines are parallel.


Lines k_1 and k_2 have the same slope.

Find the slope of each line. Which lines are parallel?

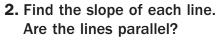
Solution

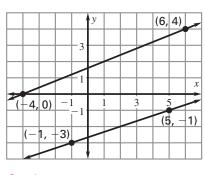
Find the slope of j_1 . Line j_1 passes through $(\underline{-5},\underline{2})$ and $(\underline{-1},\underline{10})$.

$$m_1 = \frac{\boxed{10} - \boxed{2}}{\boxed{-1} - \left(\boxed{-5}\right)} = \underline{\frac{8}{4}} = \underline{2}$$

Find the slope of j_2 . Line j_2 passes through $(\underline{-2},\underline{1})$ and $(\underline{2},\underline{9})$.

$$m_2 = \frac{\boxed{9} - \boxed{1}}{\boxed{2} - \left(\boxed{-2}\right)} = \underline{\frac{8}{4}} = \underline{2}$$


Find the slope of j_3 . Line j_3 passes through $(\underline{2},\underline{2})$ and $(\underline{5},\underline{7})$.


$$m_3 = \frac{\boxed{7} - \boxed{2}}{\boxed{5} - \boxed{2}} = \underline{\frac{5}{3}}$$

Answer Compare the slopes. Lines j_1 and j_2 are parallel.

Checkpoint Complete the following exercises.

1. Find the slope of the line that passes through the points (-2, 5) and (3, 0).

 $\frac{2}{5}$, $\frac{1}{3}$; no

-1

Line k_1 has the equation y = -2x + 5.

Line k_2 is parallel to k_1 and passes through the point (-4, 3). Write an equation of k_2 .

Solution

Find the slope of each line.

The slope of k_1 is $\underline{-2}$. Because parallel lines have the same slope, the slope of k_2 is -2.

Find the y-intercept. Use (x, y) = (-4, 3) and m = -2.

$$y = mx + b$$

y = mx + b Write slope-intercept form.

$$3 = -2(-4) + b$$
 Substitute values.

$$3 = 8 + b$$

$$-5 = b$$

 $\frac{3}{3} = \frac{8}{8} + b$ $\frac{-5}{5} = b$ Multiply.

Subtract 8 from each side.

Answer Because $m = \frac{-2}{2}$ and $b = \frac{-5}{5}$, an equation of k_2 is $y = \frac{-2x - 5}{5}$.

Checkpoint Write an equation of the line that passes through point P and is parallel to the line with the given equation.

3.
$$P(0, -3), y = x + 7$$

4.
$$P(2, 3), y = -\frac{3}{2}x - 1$$

$$y = x - 3$$

$$y=-\frac{3}{2}x+6$$