377 Perpendicular Lines in the Coordinate Plane - **Goals** Use slope to identify perpendicular lines in coordinate planes. - Write equations of perpendicular lines. # **POSTULATE 18: SLOPES OF PERPENDICULAR LINES** In a coordinate plane, two nonvertical lines are perpendicular if and only if the product of their slopes is -1. Vertical and horizontal lines are perpendicular. product of slopes = $2\left(-\frac{1}{2}\right) = -1$ ### **Example 1** Deciding Whether Lines are Perpendicular Decide whether $j_1 \perp j_2$. #### **Solution** Find the slope of each line. Slope of $$j_1 = \frac{2 - 0}{-2 - 2}$$ $$= \frac{2}{-4} = -\frac{1}{2}$$ Multiply the slopes. Answer The product is $\left(-\frac{1}{2}\right)(\underline{2}) = \underline{-1}$, so $\underline{j_1 \perp j_2}$. Decide whether the lines are perpendicular. line s: $$3x - 2y = 1$$ line $$t$$: $6x + 9y = 3$ ### Solution The slope- intercept form of a linear equation is y = mx + bwhere *m* is the slope and b is the y-intercept. Rewrite each equation in slope-intercept form to find the slope. line s: $$3x - 2y = 1$$ $-2y = -3x + 1$ $$y = \frac{3}{2}x - \frac{1}{2}$$ slope = $$\frac{3}{2}$$ line $$t: 6x + 9y = 3$$ $$9y = -6x + 3$$ $$y = \frac{-\frac{6}{9}x + \frac{3}{9}}{$$ $$y = -\frac{2}{3}x + \frac{1}{3}$$ slope = $$-\frac{2}{3}$$ Multiply the slopes to see if the lines are perpendicular. The product of the slopes is -1. Answer So, lines s and t are perpendicular. **Checkpoint** Find the slopes of the lines. Then decide whether the lines are perpendicular. $$1, -1; yes$$ **2.** line $$k_1$$: $6x + 2y = 8$ line $$k_2$$: $y = -3x - 4$ $$-3, -3;$$ no Line r_1 has equation y = 3x + 5. Find an equation of the line r_2 that passes through P(3, 1) and is perpendicular to r_1 . ## Solution Find the slope of r_2 . Let m_1 and m_2 represent the slopes of r_1 $$m_1 \cdot m_2 = \underline{-1}$$ The product of the slopes of \bot lines is $\underline{-1}$. $$3 \cdot m_2 = -1$$ Substitute for m_1 . $$m_2 = -\frac{1}{3}$$ Solve for m_2 . Then use $m_2 = -\frac{1}{3}$ and $(x, y) = (\underline{3}, \underline{1})$ to find b. $$y = m_2 x + b$$ Slope-intercept form $$y = m_2 x + b$$ Slope-intercept form $$\frac{1}{2} = \frac{1}{3} (3) + b$$ Substitute for y , m_2 , and x . $$\frac{2}{3} = b$$ Simplify. $$2 = b$$ Simplify Answer So, an equation of r_2 is $y = -\frac{1}{3}x + 2$. **Checkpoint** Find an equation of the line that passes through the given point and is perpendicular to the given line. 3. $$(0, -4), y = -x$$ $$y = x - 4$$ 4. $$(2, -2), y = \frac{1}{4}x + 10$$ $y = -4x + 6$ $$y = -4x + 6$$