
377 Perpendicular Lines in the Coordinate Plane

- **Goals** Use slope to identify perpendicular lines in coordinate planes.
 - Write equations of perpendicular lines.

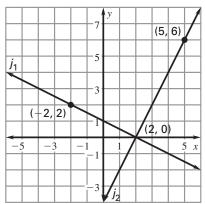
POSTULATE 18: SLOPES OF PERPENDICULAR LINES

In a coordinate plane, two nonvertical lines are perpendicular if and only if the product of their slopes is -1.

Vertical and horizontal lines are perpendicular.

product of slopes = $2\left(-\frac{1}{2}\right) = -1$

Example 1 Deciding Whether Lines are Perpendicular


Decide whether $j_1 \perp j_2$.

Solution

Find the slope of each line.

Slope of
$$j_1 = \frac{2 - 0}{-2 - 2}$$

$$= \frac{2}{-4} = -\frac{1}{2}$$

Multiply the slopes.

Answer The product is $\left(-\frac{1}{2}\right)(\underline{2}) = \underline{-1}$, so $\underline{j_1 \perp j_2}$.

Decide whether the lines are perpendicular.

line s:
$$3x - 2y = 1$$

line
$$t$$
: $6x + 9y = 3$

Solution

The slope-

intercept form of a

linear equation is y = mx + bwhere *m* is the slope

and b is the y-intercept.

Rewrite each equation in slope-intercept form to find the slope.

line s:
$$3x - 2y = 1$$

 $-2y = -3x + 1$

$$y = \frac{3}{2}x - \frac{1}{2}$$

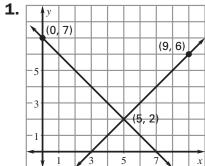
slope =
$$\frac{3}{2}$$

line
$$t: 6x + 9y = 3$$

$$9y = -6x + 3$$

$$y = \frac{-\frac{6}{9}x + \frac{3}{9}}{$$

$$y = -\frac{2}{3}x + \frac{1}{3}$$


slope =
$$-\frac{2}{3}$$

Multiply the slopes to see if the lines are perpendicular.

The product of the slopes is -1.

Answer So, lines s and t are perpendicular.

Checkpoint Find the slopes of the lines. Then decide whether the lines are perpendicular.

$$1, -1; yes$$

2. line
$$k_1$$
: $6x + 2y = 8$

line
$$k_2$$
: $y = -3x - 4$

$$-3, -3;$$
 no

Line r_1 has equation y = 3x + 5. Find an equation of the line r_2 that passes through P(3, 1) and is perpendicular to r_1 .

Solution

Find the slope of r_2 . Let m_1 and m_2 represent the slopes of r_1

$$m_1 \cdot m_2 = \underline{-1}$$
 The product of the slopes of \bot lines is $\underline{-1}$.

$$3 \cdot m_2 = -1$$
 Substitute for m_1 .

$$m_2 = -\frac{1}{3}$$
 Solve for m_2 .

Then use $m_2 = -\frac{1}{3}$ and $(x, y) = (\underline{3}, \underline{1})$ to find b.

$$y = m_2 x + b$$
 Slope-intercept form

$$y = m_2 x + b$$
 Slope-intercept form
$$\frac{1}{2} = \frac{1}{3} (3) + b$$
 Substitute for y , m_2 , and x .
$$\frac{2}{3} = b$$
 Simplify.

$$2 = b$$
 Simplify

Answer So, an equation of r_2 is $y = -\frac{1}{3}x + 2$.

Checkpoint Find an equation of the line that passes through the given point and is perpendicular to the given line.

3.
$$(0, -4), y = -x$$

$$y = x - 4$$

4.
$$(2, -2), y = \frac{1}{4}x + 10$$

 $y = -4x + 6$

$$y = -4x + 6$$