

NAME

Practice B

For use with pages 136–141

State the reason for the conclusion.

- **1.** Given: $m \angle 1 = m \angle 2$ Conclusion: $\angle 1 \cong \angle 2$
- Given: ∠3 and ∠4 are a linear pair. Conclusion: ∠3 and ∠4 are supplementary.
- **3.** Given: $\angle 5 \cong \angle 6$ Conclusion: $\angle 6 \cong \angle 5$
- **4.** Given: *X* is the midpoint of \overline{MN} . Conclusion: $\overline{MX} \cong \overline{NX}$
- **5.** Given: \overrightarrow{AD} bisects $\angle BAC$. Conclusion; $\angle BAD \cong \angle DAC$

Find the value of *x*.

X

5

N

Δ

М

8. x° $3x^{\circ}$

9. Complete the two-column proof of Theorem 3.2.

7.

Given: $\overrightarrow{CD} \perp \overrightarrow{CE}$

Prove: $\angle 1$ and $\angle 2$ are complementary.

Statements	Reasons
1. $\overrightarrow{CD} \perp \overrightarrow{CE}$	1
2 . $\angle DCE$ is a right \angle .	2
3	3. Def. of right \angle
4. $m \angle DCE = m \angle 1 + m \angle 2$	4
5	5. Substitution
6. $\angle 1$ and $\angle 2$ are complementary.	6

10. Complete the flow proof of a portion of Theorem 3.3.

