Practice B

For use with pages 220–227

State the third congruence that must be given to prove that $\triangle DEF \cong \triangle MNO$, using the indicated postulate or theorem.

1. Given:
$$\overline{DE} \cong \overline{MN}$$

$$\angle M \cong \angle D$$

Postulate

2. Given:
$$\overline{FE} \cong \overline{ON}$$

$$\angle F \cong \angle O$$

Method: AAS Congruence

Theorem

3. Given:
$$\overline{DF} \cong \overline{MO}$$

$$\angle F \cong \angle O$$

Method: ASA

Congruence Postulate

State the third congruence that must be given to prove that $\triangle ABC \cong \triangle XYZ$, using the indicated postulate or theorem.

4. Given:
$$\angle A \cong \angle X$$

$$\angle B \cong \angle Y$$

Method: AAS Congruence

Theorem

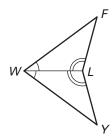
5. Given:
$$\angle A \cong \angle X$$

$$\overline{AB} \cong \overline{XY}$$

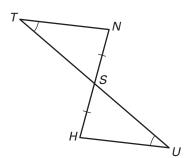
Method: ASA Congruence

Postulate

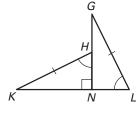
6. Given:
$$\angle C \cong \angle Z$$


$$\overline{BC} \cong \overline{YZ}$$

Method: AAS

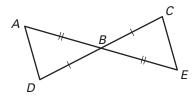

Congruence Theorem

Is it possible to prove that the triangles are congruent? If so, state the postulate or theorem you would use. Explain your reasoning.


7.

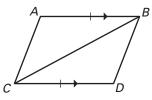
8.

9.



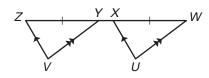
Write a two-column or a paragraph proof.

10. Given: B is the midpoint of \overline{AE} .


B is the midpoint of \overline{CD} .

Prove: $\triangle ABD \cong \triangle EBC$

11. Given: $\overline{AB} \parallel \overline{CD}, \overline{AB} \cong \overline{CD}$


Prove: $\triangle ABC \cong \triangle DCB$

$$\overline{WX} \cong \overline{YZ}$$

Prove: $\triangle WXU \cong \triangle YZV$

