4.4 Proving Triangles are Congruent: ASA and AAS

- **Goals** Prove that triangles are congruent using the ASA Congruence Postulate and the AAS Congruence Theorem.
 - Use congruence postulates and theorems in real-life problems.

Example 1 Developing Proof

Is it possible to prove that the triangles are congruent? If so, state the postulate or theorem you would use. Explain your reasoning.

Solution

- **a.** The diagram shows that $\angle EGH$ and $\angle EGF$ are right angles. So, $\angle \underline{EGH} \cong \angle \underline{EGF}$. Also, $\underline{EG} \cong \underline{EG}$ by the Reflexive Property of Congruence. This is <u>not enough</u> information to prove that the triangles are congruent.
- **b.** In addition to the angles that are marked, $\underline{OR} \cong \underline{OR}$ by the Reflexive Property of Congruence. <u>Two pairs</u> of corresponding angles and the one pair of corresponding <u>sides</u> are congruent. You can use the <u>ASA Congruence Postulate</u> to prove that $\underline{\triangle POR} \cong \underline{\triangle SRO}$.

Example 2 Proving Triangles are Congruent	
Given: $\overline{WY} \parallel \overline{XZ}, \angle Y \cong \angle X$ Prove: $\triangle WYZ \cong \triangle ZXW$	
Plan for Proof You are given that	
$\angle Y \cong \angle X$. Use the fact that WY XZ	
to identify a pair of congruent angles.	
Statements	Reasons
1. $\angle Y \cong \angle X$, $\overline{WY} \parallel \overline{XZ}$	1. Given
2. <u>∠YWZ</u> ≅ <u>∠XZW</u>	2. Alternate Interior Angles Theorem
3. <u><i>WZ</i></u> ≅ <u><i>WZ</i></u>	3. Reflexive Property of Congruence
4. $\triangle WYZ \cong \triangle ZXW$	4. AAS Congruence Theorem

Example 3 Using Properties of Congruent Triangles

Cliff Diving At a cliff-diving competition, you and a friend stand at different locations (points *F* and *Y*) along the shore. To record the spot where a diver enters the water, you find the angle between each of your sightlines and \overline{FY} . Assuming your sightlines are accurate, do you have enough information to record a diver's entry data?

Solution

Think of points *F* and *Y* as two vertices of a triangle. The diver's entry spot *D* is the other vertex. You know $m\angle F$ and $m\angle Y$. You also know the length of the included side \overline{FY} . From the <u>ASA Congruence Postulate</u>, you can conclude that any two triangles with these measurements are <u>congruent</u>. In other words, there is only one triangle with the given measurements and location.

Answer You have enough information to record a diver's entry data .

Checkpoint Complete the following exercises.