4.5 Using Congruent Triangles

- **Goals** Use congruent triangles to plan and write proofs.
 - Use congruent triangles to prove constructions are valid.

Example 1 Planning and Writing a Proof	
Given: $\overline{SD} \cong \overline{TC}, \overline{CS} \cong \overline{DT}$	
Prove: $\angle SCT \cong \angle TDS$	K
Plan for Proof Show that $\triangle TDS \cong \triangle SCT$. Then use the fact that corresponding parts of congruent triangles are congruent.	
Solution	
Mark the diagram at the right with the given information. Then mark any additional information that you can deduce. Because \overline{ST} is the same segment in both triangles, you can deduce that $\overline{ST} \cong \overline{ST}$.	
Paragraph Proof By the Reflexive Property of Congr	uence,
$\overline{ST} \cong \overline{ST}$. You can use the <u>SSS</u> Congruence Pos	tulate to
conclude that $\triangle TDS \cong \triangle SCT$. Finally, because co	rresponding

conclude that $\triangle IDS \cong \triangle SCI$. Finally, because corresponding parts of congruent triangles are congruent, it follows that $\angle SCT \cong \angle TDS$.

Checkpoint Complete the following exercise.

Example 2 Using More than O	ne Pair of Triangles		
Given: $\angle GMJ$ and $\angle HMJ$ are righ $\overline{GF} \cong \overline{HF}, \angle 1 \cong \angle 2$	t angles,		
Prove: $\angle GJM \cong \angle HJM$			
Plan for Proof Prove that $\triangle GJM \cong \triangle HJM$. Then use the fact that corresponding parts of congruent triangles are congruent to show that $\angle GJM \cong \angle HJM$.			
Statements	Reasons		
1. $\overline{GF} \cong \overline{HF}, \angle 1 \cong \angle 2$	1. Given		
2. <u>FM</u> ≅ <u>FM</u>	2. Reflexive Prop. of Cong.		
3. \triangle FGM $\cong \triangle$ FHM	3. SAS Congruence Postulate		

4. Corres. parts of $\cong \triangle s$ are \cong .

5. Right angles are congruent.

6. Reflexive Prop. of Cong.

7. <u>SAS Congruence Postulate</u> **8.** Corres. parts of $\cong \triangle s$ are \cong .

Checkpoint Complete the following exercise.

4. $\overline{GM} \cong \overline{MH}$

6. $\overline{MJ} \cong \overline{MJ}$

5. $\angle GMJ \cong \angle HMJ$

8. $\angle GJM \cong \angle HJM$

7. \triangle GJM $\cong \triangle$ HJM

2. Given: $\angle NZY$, $\angle QZY$, $\angle MXY$, M $\angle PXY$ are right angles, $\overline{YN} \cong \overline{YQ}$, Х $\angle N \cong \angle Q$ **Prove:** $\triangle MYX \cong \triangle PYX$ Statements (Reasons) 1. $\overline{YN} \cong \overline{YQ}$, $\angle N \cong \angle Q$ (Given) 2. $\angle NZY \cong \angle OZY$ (Right angles are congruent.) 3. $\triangle NYZ \cong \triangle QYZ$ (AAS Congruence Theorem) 4. $\angle NYZ \cong \angle QYZ$ (Corres. parts of $\cong \triangle s$ are \cong .) 5. $\angle MYX \cong \angle QYZ$, $\angle PYX \cong \angle NYZ$ (Vertical Angles Theorem) 6. $\angle MYX \cong \angle PYX$ (Transitive Property of Angle Congruence) 7. $\overline{XY} \cong \overline{XY}$ (Reflexive Property of Congruence) 8. $\angle MXY \cong \angle PXY$ (Right angles are congruent.) 9. $\triangle MYX \cong \triangle PYX$ (ASA Congruence Postulate)

Example 3 Proving a Construction

The construction shows $\angle GHJ$ bisected by \overline{HK} . Write a proof to verify that the construction is valid.

Plan for Proof Show that $\triangle HGK \cong \triangle HJK$. Then show that $\angle 1 \cong \angle 2$. By construction, you can assume the following statements as given.

rite G H

 $\overline{HG} \cong \overline{HJ}$ Same compass setting is used.

 $\overline{GK} \cong \overline{JK}$ Same compass setting is used.

Solution

Statements	Reasons
1. <u><i>HG</i></u> ≅ <u><i>HJ</i></u>	1. Given
2. <u><i>GK</i></u> ≅ <u><i>JK</i></u>	2. Given
3. $\overline{HK} \cong \overline{HK}$	3. Reflexive Property of Congruence
4. \triangle HGK $\cong \triangle$ HJK	4. SSS Congruence Postulate
5. ∠ <u>1</u> ≅ ∠ <u>2</u>	5. Corresp. parts of $\cong \triangle s$ are \cong .
6. <i>HK</i> bisects ∠ <i>GHJ</i>	6. Definition of angle bisector

Checkpoint Use a straightedge and a compass to perform the construction. Label the important points of your construction. Then write a paragraph proof to verify the results.

