

- **Goals** Use properties of isosceles and equilateral triangles.
 - Use properties of right triangles.

VOCABULARY

Base angles Base angles are the two angles adjacent to the base of a triangle.

Vertex angle The vertex angle is the angle opposite the base of a triangle.

THEOREM 4.6: BASE ANGLES THEOREM

If two sides of a triangle are congruent, then the angles opposite them are congruent.

If $\overline{AB} \cong \overline{AC}$, then $\angle B \cong \angle C$.

THEOREM 4.7: CONVERSE OF THE BASE ANGLES THEOREM

If two angles of a triangle are congruent, then the sides opposite them are congruent.

If $\angle B \cong \angle C$, then $\overline{AB} \cong \overline{AC}$.

COROLLARY TO THEOREM 4.6

If a triangle is equilateral, then it is equiangular.

COROLLARY TO THEOREM 4.7

If a triangle is equiangular, then it is equilateral.

Example 1 Using Isosceles Triangles

Find the value of y.

Solution

Notice that y represents the measure of a base angle of an isosceles triangle. From the Base Angles Theorem, the other base angle has the same measure. The vertex angle forms a linear pair with a 70° angle, so its measure is 110° .

 $110^{\circ} + \underline{2y^{\circ}} = 180^{\circ}$ Apply the Triangle Sum Theorem. y = 35 Solve for y.

Checkpoint Solve for x and y.

Example 2 Proving Right Triangles Congruent

The pole holding up one end of a volleyball net is perpendicular to the plane containing the points W, X, Y, and Z. Each of the lines running from the top of the pole to X, Y, and Z uses the same length of rope. Prove that $\triangle VWX, \triangle VWY$, and $\triangle VWZ$ are congruent.

Given: $\overline{VW} \perp \overline{WX}$, $\overline{VW} \perp \overline{WY}$, $\overline{VW} \perp \overline{WZ}$, $\overline{VX} \cong \overline{VY} \cong \overline{VZ}$ Prove: $\triangle VWX \cong \triangle VWY \cong \triangle VWZ$

Paragraph Proof You are given that $\overline{VW} \perp \overline{WX}$ and $\overline{VW} \perp \overline{WY}$, which implies that $\underline{\angle VWX}$ and $\underline{\angle VWY}$ are right angles. By definition, $\underline{\triangle VWX}$ and $\underline{\triangle VWY}$ are right triangles. You are given that the hypotenuses of these two triangles, \overline{VX} and \overline{VY} , are congruent. Also, \overline{VW} is a leg for both triangles, and $\underline{VW} \cong \underline{VW}$ by the Reflexive Property of Congruence. Thus, by the Hypotenuse-Leg Congruence Theorem, $\triangle VWX \cong \underline{\triangle VWY}$. Similar reasoning can be used to prove that $\triangle VWY \cong \underline{\triangle VWZ}$. So, by the Transitive Property of Congruent Triangles, $\underline{\triangle VWX} \cong \underline{\triangle VWY} \cong \underline{\triangle VWZ}$.

Checkpoint Complete the following exercise.

