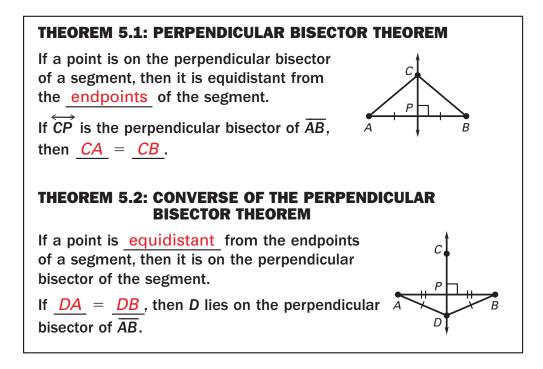


Goals • Use properties of perpendicular bisectors.

• Use properties of angle bisectors to identify equal distances.


VOCABULARY

Perpendicular bisector A perpendicular bisector is a segment, ray, line, or plane that is perpendicular to a segment at its midpoint.

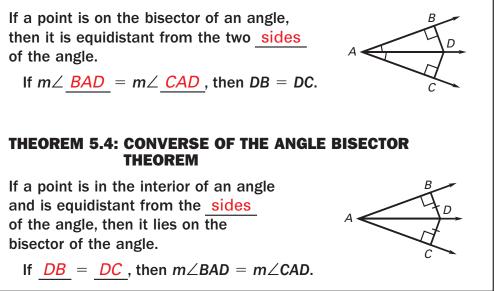
Equidistant from two points A point is equidistant from two points if its distance from each point is the same.

Distance from a point to a line The distance from a point to a line is the length of the perpendicular segment from the point to the line.

Equidistant from two lines A point is equidistant from two lines when the point is the same distance from one line as it is from another line.

Example 1 Using Perpendicular Bisectors

In the diagram shown, \overrightarrow{BE} is the perpendicular bisector of \overrightarrow{AC} .

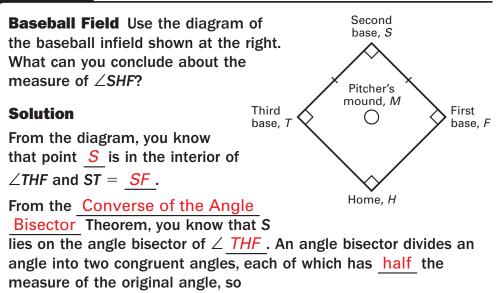

- a. What segment lengths are equal?
- **b.** $\overline{AP} \cong \overline{CP}$. What can you conclude about point *P*?

Solution

a. Because \overrightarrow{BE} bisects \overrightarrow{AC} , $\overrightarrow{AE} = \overrightarrow{CE}$.

Because B is on the perpendicular bisector of \overline{AC} , you can use the <u>Perpendicular Bisector</u> Theorem to conclude that $\underline{AB} = \underline{BC}$. **b.** Because $\overline{AP} \cong \overline{CP}$, $AP = \underline{CP}$. Using the <u>Converse of the</u> <u>Perpendicular Bisector</u> Theorem, you can conclude that P lies on \overrightarrow{BE} .

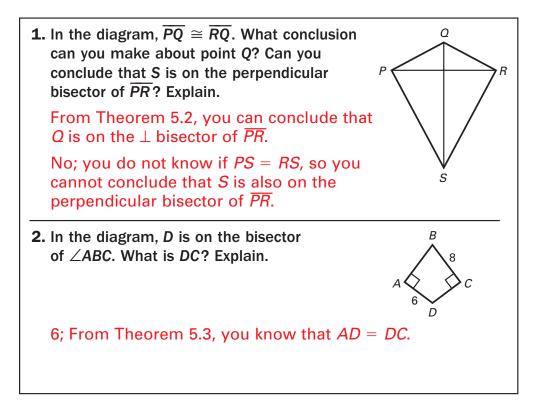
THEOREM 5.3: ANGLE BISECTOR THEOREM


D

F

R

С


Example 2 Using Angle Bisectors

$$m\angle SHF = \frac{90^\circ}{2} = 45^\circ.$$

Answer The measure of \angle SHF is 45 °.

Checkpoint Complete the following exercises.

