Bisectors of a Triangle

- **Goals** Use properties of perpendicular bisectors of a triangle.
 - Use properties of angle bisectors of a triangle.

VOCABULARY

Perpendicular bisector of a triangle A perpendicular bisector of a triangle is a line, ray, or segment that is perpendicular to a side of the triangle at the midpoint of the side.

Concurrent lines Concurrent lines are three or more lines that intersect at the same point.

Point of concurrency A point of concurrency is the point of intersection of concurrent lines.

Circumcenter of a triangle A circumcenter of a triangle is the point of concurrency of the perpendicular bisectors of the triangle.

Angle bisector of a triangle An angle bisector of a triangle is a bisector of an angle of the triangle.

Incenter of a triangle An incenter of a triangle is the point of concurrency of the angle bisectors of a triangle.

THEOREM 5.5: CONCURRENCY OF PERPENDICULAR **BISECTORS OF A TRIANGLE**

The perpendicular bisectors of a triangle intersect at a point that is equidistant from the vertices of the triangle.

$$PA = PB = PC$$

Boating The positions of three boats are shown in the diagram. The boats are equidistant from a buoy. Where is the buoy?

Solution

To find the location of the buoy, find the <u>circumcenter</u> of the triangle formed by the boats' locations.

Use the diagram at the right to make a sketch that shows the buoy's location. Label the buoy's location.

Checkpoint Complete the following exercise.

1. The perpendicular bisectors of $\triangle PQR$ meet at point S. Find PS and QS.

10, 10

THEOREM 5.6: CONCURRENCY OF ANGLE BISECTORS OF A TRIANGLE

The angle bisectors of a triangle intersect at a point that is equidistant from the sides of the triangle.

$$PD = \underline{PE} = \underline{PF}$$

In the diagram, the angle bisectors of $\triangle JKL$ meet at point H.

- a. What segments are congruent?
- **b.** Find HN and HP.

Solution

a. By Theorem 5.6, the three angle bisectors of a triangle intersect at a point that is equidistant from the sides of the triangle. So, HM = HN = HP. Therefore, \overline{HM} , \overline{HN} , and \overline{HP} are congruent.

b. Use the Pythagorean Theorem to find HN in $\triangle HNK$.

$$(HN)^2 + (\underline{KN})^2 = (\underline{HK})^2$$
 $(HN)^2 + \underline{24}^2 = \underline{25}^2$
 $(HN)^2 + \underline{576} = \underline{625}$
 $(HN)^2 = \underline{49}$
 $HN = \underline{7}$
Answer So, $HN = HP = 7$ units.

Pythagorean Theorem

Substitute.

Evaluate each square.

Subtract 576 from each side.

24

Find the positive square root.

Checkpoint Complete the following exercise.

2. The angle bisectors of $\triangle TUV$ meet at point W. Find the value of d.

4

