

**Goals** • Use properties of medians of a triangle.

• Use properties of altitudes of a triangle.

## VOCABULARY

Median of a triangle A median of a triangle is a segment whose endpoints are a vertex of the triangle and the midpoint of the opposite side.

**Centroid of a triangle** The centroid of a triangle is the point of concurrency of the medians of the triangle.

Altitude of a triangle An altitude of a triangle is the perpendicular segment from a vertex to the opposite side or to the line that contains the opposite side.

**Orthocenter of a triangle** The orthocenter of a triangle is the point of concurrency of the lines containing the altitudes of the triangle.

## **THEOREM 5.7: CONCURRENCY OF MEDIANS OF A TRIANGLE**

The medians of a triangle intersect at a point that is two thirds of the distance from each vertex to the midpoint of the opposite side.

If *P* is the centroid of  $\triangle ABC$ , then

$$AP = \frac{2}{3}$$
 AD,  $BP = \frac{2}{3}$  BF, and  
 $CP = \frac{2}{3}$  CE.



#### **THEOREM 5.8: CONCURRENCY OF ALTITUDES OF A TRIANGLE**

The lines containing the altitudes of a triangle are concurrent.

If  $\overrightarrow{AE}$ ,  $\overrightarrow{BF}$ , and  $\overrightarrow{CD}$  are the altitudes of  $\triangle ABC$ , then the lines  $\overrightarrow{AE}$ ,  $\overrightarrow{BF}$ , and  $\overrightarrow{CD}$  intersect at some point *H*.





# **Example 2** Finding the Centroid of a Triangle

Find the coordinates of centroid C of  $\triangle$  DEF.

## Solution

You know that the centroid is two thirds of the distance from each vertex to the midpoint of the opposite side.

**Choose** the median  $\overline{EJ}$ . Find the

DF. The coordinates of J are:

coordinates of *J*, the midpoint of



Use the Midpoint Formula to find the coordinates of J.



Find the distance from vertex *E* to midpoint *J*. The distance from *E* to *J* is 7 - 1, or 6 units.

**Determine** the coordinates of centroid C, which is  $\frac{1}{3} \cdot \underline{6}$ , or

2 units up from point J along the median  $\overline{EJ}$ .

Answer The coordinates of centroid C are  $(\underline{5}, \underline{1} + \underline{2})$ , or  $(\underline{5}, \underline{3})$ .

#### **Example 3** Drawing Altitudes and Orthocenters

Is the orthocenter for  $\triangle ABC$  located *inside*, *outside*, or *on* the triangle?

### Solution

The orthocenter of  $\triangle ABC$  is the intersection of the lines containing the altitudes of the triangle.

Use the diagram at the right to locate the orthocenter *D*.

Answer So, the orthocenter is located <u>outside</u>  $\triangle ABC$ .



Checkpoint Complete the following exercises.

