Properties of Parallelograms

- **Goals** Use some properties of parallelograms.
 - Use properties of parallelograms in real-life situations.

VOCABULARY

Parallelogram A parallelogram is a quadrilateral with both pairs of opposite sides parallel.

THEOREM 6.2

If a quadrilateral is a parallelogram, then its opposite sides are congruent.

$$\overline{PO} \cong \overline{RS}$$
 and $\overline{SP} \cong \overline{OR}$

THEOREM 6.3

If a quadrilateral is a parallelogram, then its opposite angles are congruent.

$$\angle P \cong \angle \underline{R}$$
 and $\angle \underline{Q} \cong \angle S$

THEOREM 6.4

If a quadrilateral is a parallelogram, then its consecutive angles are supplementary.

$$m\angle P + m\angle Q = \underline{180}^{\circ},$$

 $m\angle Q + m\angle R = \underline{180}^{\circ},$
 $m\angle R + m\angle S = \underline{180}^{\circ},$
 $m\angle S + m\angle P = \underline{180}^{\circ}$

THEOREM 6.5

If a quadrilateral is a parallelogram, then its diagonals bisect each other.

$$\overline{\mathit{QM}}\cong\overline{\mathit{SM}}$$
 and $\overline{\mathit{PM}}\cong\overline{\mathit{RM}}$

Example 1 Using Properties of Parallelograms

STUV is a parallelogram. Find the unknown length.

- a. TU
- b. WT

Solution

a.
$$TU = SV$$
 Opposite sides of a \square are

$$TU = 12$$
 Substitute 12 for SV

a.
$$TU = \underline{SV}$$
 Opposite sides of a \square are \cong .

 $TU = \underline{12}$ Substitute $\underline{12}$ for \underline{SV} .

b. $WT = \underline{WV}$ Diagonals of a \square bisect each other.

 $WT = \underline{14}$ Substitute $\underline{14}$ for \underline{WV} .

$$WT = 14$$
 Substitute 14 for WV .

Example 2 Using Properties of Parallelograms

JKLM is a parallelogram. Find $m \angle L$.

Solution

$$m\angle L + m\angle \underline{M} = \underline{180}^{\circ}$$
 Consecutive angles of a \square are supplementary.

$$m\angle L + \underline{135}^{\circ} = \underline{180}^{\circ}$$
 Substitute $\underline{135}^{\circ}$ for $m\angle \underline{M}$.
 $m\angle L = \underline{45}^{\circ}$ Subtract $\underline{135}^{\circ}$ from each side.

Example 3 Using Algebra with Parallelograms

ABCD is a parallelogram. Find the value of x.

Solution

$$m\angle \underline{C} = m\angle \underline{A}$$

$$\underline{9x} + \underline{2} = \underline{12x} - \underline{34}$$

$$\underline{9x} + \underline{36} = \underline{12x}$$

$$\underline{36} = \underline{3} x$$

$$\underline{12} = x$$

Opposite angles of a \square are \cong .

Substitute.

Add 34 to each side.

Subtract 9x from each side.

Divide each side by 3.

Checkpoint Find the measure or value in parallelogram **DEFG**. Explain your reasoning.

1. Find $m \angle D$.

50°; Opposite \triangle of a \square are \cong .

2. Find *EH*.

8; Diagonals of a \square bisect each other.

3. Find the value of *y* in the parallelogram above.

4. Find the value of *x* in the parallelogram above.

5; opposite sides of a \square are \cong .

18; Consecutive \triangle of a \square are supplementary.

Example 4 Using Parallelograms in Real Life

Gemstones A gemstone is cut so that one of its facets has four sides. The measures of the consecutive angles in the facet are 45° , 135° , and 45° . Is the facet a parallelogram? Explain.

Solution

The facet is not a parallelogram. Here are two reasons why.

- The opposite angles are not congruent.
- The sums of the measures of the consecutive angles are 180°, 270°, 180°, and 90°. If the facet were a parallelogram, then all pairs of consecutive angles would be supplementary.