7.3 Rotations

- **Goals** Identify rotations in a plane.
 - Determine whether a figure has rotational symmetry.

VOCABULARY

Rotation A rotation is a type of transformation in which a figure is turned about a fixed point.

Center of rotation In a rotation, the fixed point is called the center of rotation.

Angle of rotation In a rotation, the angle of rotation is the angle formed when rays are drawn from the center of rotation to a point and its image.

Rotational symmetry A figure in the plane has rotational symmetry if the figure can be mapped onto itself by a rotation of 180° or less.

THEOREM 7.2: ROTATION THEOREM

A rotation is an isometry.

Example 1

Rotations in a Coordinate Plane

Rotate $\triangle ABC$ clockwise 90° about the origin and name the coordinates of the new vertices.

 $\triangle ABC$ is shown in the graph. Use a protractor, a compass, and a straightedge to find the rotated vertices and draw $\triangle A'B'C'$. The coordinates of $\triangle ABC$ are listed below. Write the coordinates of $\triangle A'B'C'$.

- **Checkpoint** Name the coordinates of the vertices of the image after the given rotation of $\triangle ABC$ about the origin.
 - 1. 90° clockwise

$$A'(0, -2), B'(5, -2), C'(5, -6)$$

2. 90° counterclockwise

$$A'(0, 2), B'(-5, 2), C'(-5, 6)$$

THEOREM 7.3

If lines k and m intersect at point P, then a reflection in k followed by a reflection in m is a rotation about point P.

The angle of rotation is 2x°, where x° is the measure of the acute or right angle formed by k and m.

$$m\angle BPB'' = 2x^{\circ}$$

Example 2 Using Theorem 7.3

In the diagram, \overline{HJ} is reflected in line k to produce $\overline{H'J'}$. This segment is then reflected in line m to produce $\overline{H''J''}$. Describe the transformation that maps \overline{HJ} to $\overline{H''J''}$.

Solution

The acute angle between lines k and m has a measure of $\underline{68}^{\circ}$. Applying Theorem 7.3, you can conclude that the transformation that maps \overline{HJ} to $\overline{H''J''}$ is a counterclockwise rotation of $\underline{136}^{\circ}$ about point P.

Does the figure have rotational symmetry? If so, describe the rotations that map the figure onto itself.

- a. Isosceles triangle
- **b.** Rhombus
- c. Regular hexagon

Solution

- a. No . This isosceles triangle does not have rotational symmetry.
- b. Yes . This rhombus has rotational symmetry. It can be mapped onto itself by a clockwise or counterclockwise rotation of 180° about its center.
- c. Yes . This hexagon has rotational symmetry. It can be mapped onto itself by a clockwise or counterclockwise rotation of 60°, 120 $^{\circ}$, or 180 $^{\circ}$ about its center.
- **Checkpoint** Does the figure have rotational symmetry? If so, describe the rotations that map the figure onto itself.

3.

4.

5.

Yes; the figure can be mapped onto itself by a clockwise or counterclockwise rotation of 90° or 180° about its center.

No

Yes; the figure can be mapped onto itself by a clockwise or counterclockwise rotation of 72° or 144° about its center.