Glide Reflections and Compositions

- **Goals** Identify glide reflections in a plane.
 - Represent transformations as compositions of simpler transformations.

VOCABULARY

Glide reflection A glide reflection is a transformation in which every point P is mapped onto a point P" by the following two steps: (1) A translation maps P onto P'. (2) A reflection in a line k parallel to the direction of the translation maps P'onto P''.

Composition When two or more transformations are combined to produce a single transformation, the result is called a composition of the transformations.

Example 1

Finding the Image of a Glide Reflection

Sketch the image of $\triangle ABC$ after a glide reflection.

Translation: $(x, y) \rightarrow (x, y + 8)$

Reflection: in the y-axis

Translate $\triangle ABC$ by moving it 8 units up to produce $\triangle A'B'C'$. The vertices of $\triangle A'B'C'$ are $\overline{A'(2, 6)}, \overline{B'(7, 6)}$, and $\overline{C'(7, 2)}$. Next, reflect $\triangle A'B'C'$ in the y-axis to produce $\triangle A''B''C''$. Its vertices are A''(-2, 6), B''(-7, 6), and C''(-7, 2).

Checkpoint Write the coordinates of the image of P(4, -2) after the given glide reflection.

1. Translation: $(x, y) \rightarrow (x + 4, y)$ **Reflection:** in the *x*-axis

(8, 2)

2. Translation: $(x, y) \rightarrow (x, y - 6)$ **Reflection:** in the *y*-axis

(-4, -8)

THEOREM 7.6: COMPOSITION THEOREM

The composition of two (or more) isometries is an isometry.

Example 2 Finding the Image of a Composition

Sketch the image of \overline{MN} after a composition of the given rotation and reflection.

$$M(-4, 2), N(-2, 5)$$

Rotation: 90° clockwise about

the origin

Reflection: in the x-axis

The graph of \overline{MN} is shown.

Rotate \overline{MN} 90° about the origin to produce $\overline{M'N'}$. The endpoints of $\overline{M'N'}$ are $M'(\underline{2},\underline{4})$ and $N'(\underline{5},\underline{2})$.

Reflect $\overline{M'N'}$ in the x-axis to produce $\overline{M''N''}$. The endpoints of $\overline{M''N''}$ are $M''(\frac{2}{5}, \frac{-4}{2})$ and $N''(\frac{5}{5}, \frac{-2}{2})$.

Example 3

Describing a Composition

Describe the composition of transformations in the diagram.

Solution

Two transformations are shown. First, $\triangle PQR$ is rotated $\underline{180}^{\circ}$ about the origin to produce $\triangle P'Q'R'$. Then $\triangle P'Q'R'$ is translated using $(x,y) \rightarrow (\underline{x+6},\underline{y+1})$ to produce $\triangle P''Q''R''$.

Checkpoint Write the coordinates of the image of A(-3, 5) after a composition using the given transformations in the order they appear.

3. Translation: $(x, y) \rightarrow (x + 9, y - 8)$

Rotation: 90° counterclockwise about the origin

(3, 6)

4. Rotation: 180° about the origin

Reflection: in the *y*-axis

(-3, -5)

Describe the composition of the transformations.

5.

Translation $(x, y) \rightarrow (x + 7, y)$, followed by a 180° rotation about the origin

6.

Reflection in the x-axis, followed by a reflection in the line x = 6