8.5 Proving Triangles are Similar

Goals • Use similarity theorems to prove two triangles are similar.

• Use similar triangles to solve real-life problems.

To decide which, if any, of the triangles are similar, you need to consider the ratios of the lengths of corresponding sides.

Ζ

12

Х

Ratios of Side Lengths of $\triangle QRS$ and $\triangle TVW$

10

S

Q

Shortest sides	Longest sides	Remaining sides
$\frac{RS}{VW} = \frac{4}{6} = \frac{2}{3},$	$\frac{QS}{TW} = \frac{10}{15} = \frac{2}{3},$	$\frac{QR}{TV} = \frac{\frac{8}{12}}{\frac{12}{3}} = \frac{\frac{2}{3}}{\frac{3}{3}}$
Answer Because the ratios are equal, $\triangle QRS \sim \triangle TVW$.		
Ratios of Side Lengths of $ riangle QRS$ and $ riangle XYZ$		
Shortest sides	Longest sides	Remaining sides
Shortest sides $\frac{RS}{YZ} = \frac{4}{6} = \frac{2}{3},$	Longest sides $\frac{QS}{XZ} = \frac{10}{12} = \frac{5}{6},$	Remaining sides $\frac{QR}{XY} = \frac{8}{10} = \frac{4}{5}$

Checkpoint Complete the following exercise.

Example 2 Using the SAS Similarity Theorem

Use the given lengths to prove that $\triangle DFR \sim \triangle MNR$.

Solution

Given: DF = 15, MN = 12DM = 2, DR = 10

Prove: $\triangle DFR \sim \triangle MNR$

Paragraph Proof Use the SAS Similarity Theorem. Begin by finding the ratios of the lengths of the corresponding sides.

 $\frac{DF}{MN} = \frac{15}{12} = \frac{5}{4}$ $\frac{DR}{MR} = \frac{10}{10 - 2} = \frac{10}{8} = \frac{5}{4}$

So, the lengths of sides \overline{DF} and \overline{DR} are <u>proportional</u> to the lengths of the corresponding sides of $\triangle MNR$. Because $\angle FDR$ and $\angle NMR$ are <u>right angles</u>, use the <u>SAS Similarity</u> Theorem to conclude that $\triangle DFR \sim \triangle MNR$.

Checkpoint Complete the following exercise.

