The Converse of the **Pythagorean Theorem**

- **Goals** Use the Converse of the Pythagorean Theorem to solve problems.
 - Use side lengths to classify triangles by their angle measures.

THEOREM 9.5: CONVERSE OF THE PYTHAGOREAN THEOREM

If the square of the length of the longest side of a triangle is equal to the sum of the squares of the lengths of the other two sides, then the triangle is a right triangle.

If $c^2 = a^2 + b^2$, then $\triangle ABC$ is a right triangle.

Example 1

Verifying Right Triangles

Tell whether the triangle at the right is a right triangle.

Solution

Let c represent the length of the longest side of the triangle. Check to see whether the side lengths satisfy the equation $c^2 = a^2 + b^2$.

Answer The triangle is a right triangle.

Checkpoint Tell whether the triangle is a right triangle.

1.

The triangle is a right triangle.

2.

The triangle is not a right triangle.

THEOREM 9.6

If the square of the length of the longest side of a triangle is less than the sum of the squares of the lengths of the other two sides, then the triangle is acute .

If
$$c^2 < a^2 + b^2$$
, then $\triangle ABC$ is acute.

THEOREM 9.7

If the square of the length of the longest side of a triangle is greater than the sum of the squares of the lengths of the other two sides, then the triangle is obtuse.

If
$$c^2 > a^2 + b^2$$
, then $\triangle ABC$ is obtuse .

Example 2 Classifying Triangles

Decide whether the set of numbers can represent the side lengths of a triangle. If they can, classify the triangle as *right*, *acute*, or *obtuse*.

Solution

Compare the square of the length of the longest side with the sum of the squares of the lengths of the two shorter sides.

a.
$$c^2$$
 ? $a^2 + b^2$ Compare c^2 with $a^2 + b^2$.

 a^2 ? $a^2 + b^2$ Substitute.

 a^2 ? $a^2 + b^2$ Substitute.

 a^2 ? $a^2 + b^2$ Multiply.

 a^2 2304 < a^2 2384 a^2 62 is less than $a^2 + b^2$.

Answer Because $c^2 < a^2 + b^2$, the triangle is <u>acute</u>.

b.
$$c^2$$
 ? $a^2 + b^2$ Compare c^2 with $a^2 + b^2$.

13.9 2 ? 5.7 2 + 12.22 Substitute.

193.21 ? 32.49 + 148.84 Multiply.

193.21 > 181.33 c^2 is greater than $a^2 + b^2$.

Answer Because $c^2 > a^2 + b^2$, the triangle is obtuse .

Checkpoint Can the numbers represent the side lengths of a triangle? If so, classify the triangle as right, acute, or obtuse.

3. 16, 30, 34	4. 8, 13, 22	5. 6, 9, 12
yes; right	no	yes; obtuse