The Converse of the **Pythagorean Theorem** - **Goals** Use the Converse of the Pythagorean Theorem to solve problems. - Use side lengths to classify triangles by their angle measures. ### **THEOREM 9.5: CONVERSE OF THE PYTHAGOREAN THEOREM** If the square of the length of the longest side of a triangle is equal to the sum of the squares of the lengths of the other two sides, then the triangle is a right triangle. If $c^2 = a^2 + b^2$, then $\triangle ABC$ is a right triangle. # Example 1 # **Verifying Right Triangles** Tell whether the triangle at the right is a right triangle. ### Solution Let c represent the length of the longest side of the triangle. Check to see whether the side lengths satisfy the equation $c^2 = a^2 + b^2$. **Answer** The triangle is a right triangle. # **Checkpoint** Tell whether the triangle is a right triangle. 1. The triangle is a right triangle. 2. The triangle is not a right triangle. # **THEOREM 9.6** If the square of the length of the longest side of a triangle is less than the sum of the squares of the lengths of the other two sides, then the triangle is acute . If $$c^2 < a^2 + b^2$$, then $\triangle ABC$ is acute. # **THEOREM 9.7** If the square of the length of the longest side of a triangle is greater than the sum of the squares of the lengths of the other two sides, then the triangle is obtuse. If $$c^2 > a^2 + b^2$$, then $\triangle ABC$ is obtuse . # **Example 2** Classifying Triangles Decide whether the set of numbers can represent the side lengths of a triangle. If they can, classify the triangle as *right*, *acute*, or *obtuse*. # **Solution** Compare the square of the length of the longest side with the sum of the squares of the lengths of the two shorter sides. a. $$c^2$$? $a^2 + b^2$ Compare c^2 with $a^2 + b^2$. a^2 ? $a^2 + b^2$ Substitute. a^2 ? $a^2 + b^2$ Substitute. a^2 ? $a^2 + b^2$ Multiply. a^2 2304 < a^2 2384 a^2 62 is less than $a^2 + b^2$. Answer Because $c^2 < a^2 + b^2$, the triangle is <u>acute</u>. b. $$c^2$$? $a^2 + b^2$ Compare c^2 with $a^2 + b^2$. 13.9 2 ? 5.7 2 + 12.22 Substitute. 193.21 ? 32.49 + 148.84 Multiply. 193.21 > 181.33 c^2 is greater than $a^2 + b^2$. Answer Because $c^2 > a^2 + b^2$, the triangle is obtuse . Checkpoint Can the numbers represent the side lengths of a triangle? If so, classify the triangle as right, acute, or obtuse. | 3. 16, 30, 34 | 4. 8, 13, 22 | 5. 6, 9, 12 | |----------------------|--------------|---------------------------| | yes; right | no | yes; obtuse |