Solving Right Triangles

- **Goals** Solve a right triangle.
 - Use right triangles to solve real-life problems.

VOCABULARY

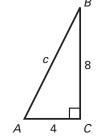
Solve a right triangle To solve a right triangle means to determine the measures of all three angles and the lengths of all three sides.

Example 1 Solving a Right Triangle

Solve the right triangle. Round decimals to the nearest tenth.

Solution

Use the Pythagorean Theorem to find the length of the hypotenuse c.



$$\mbox{(hypotenuse)2} = (\mbox{leg})^2 \, + (\mbox{leg})^2 \qquad \mbox{Pythagorean} \mbox{Theorem}$$

$$c^2 = \underline{4^2 + \underline{8^2}}$$
 Substitute.
$$c^2 = \underline{80}$$
 Simplify.

$$2^2 = 80$$
 Simplify.

$$c = 4\sqrt{5}$$
 Find the positive square root.

$$c \approx 8.9$$
 Use a calculator to approximate.

Use a calculator to find the measure of $\angle B$.

(4
$$\div$$
 8) 2nd TAN \approx 26.6 $^{\circ}$

 $\angle A$ and $\angle B$ are complementary. The sum of their measures is 90 °.

$$m\angle A + m\angle B = 90^{\circ}$$
 $\angle A$ and $\angle B$ are complementary.

$$m\angle A + \underline{26.6}^{\circ} = \underline{90}^{\circ}$$
 Substitute for $m\angle B$.

 $m\angle A = 63.4^{\circ}$ Subtract.

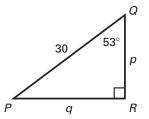
Answer The side lengths are 4, 8, and 8.9. The angle measures are 26.6 °, 63.4 °, and 90 $\overline{}$ °.

Example 2 Solving a Right Triangle

Solve the right triangle. Round decimals to the nearest tenth.

Solution

Use trigonometric ratios to find the values of p and q.



$$\sin Q = \frac{\text{opp.}}{\text{hyp.}}$$

$$\cos Q = \frac{\text{adj.}}{\text{hyp.}}$$

$$\sin \underline{53}^{\circ} = \frac{q}{30}$$

$$\sin \underline{53}^{\circ} = \frac{q}{30} \qquad \cos \underline{53}^{\circ} = \frac{p}{30}$$

30
$$\sin 53^{\circ} = q$$
 30 $\cos 53^{\circ} = p$

30 cos 53
$$^{\circ} = p$$

$$30 (0.7986) \approx q$$
 $30 (0.6018) \approx p$

$$30 (0.6018) \approx p$$

$$18.1 \approx p$$

 $\angle P$ and $\angle Q$ are complementary. The sum of their measures is 90 °.

$$m\angle P + m\angle Q = 90^{\circ}$$
 $\angle P$ and $\angle Q$ are complementary.

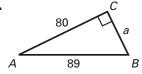
$$m\angle P + \underline{53}^{\circ} = \underline{90}^{\circ}$$
 Substitute for $m\angle Q$.

$$m\angle P = 37^{\circ}$$
 Subtract.

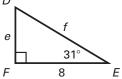
Answer The side lengths of the triangle are 18.1, 24.0, and 30 . The angle measures are 37° , 53° , and 90° .

Checkpoint Solve the right triangle. Round decimals to the nearest tenth.

1.



2. D



Side lengths: 39, 80, 89 Angle measures: 26.0°,

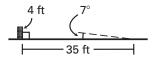
64.0°, 90°

Side lengths: 4.8, 8, 9.3 Angle measures: 31°, 59°,

90°

Example 3 Solving a Right Triangle

Sports When a hockey player is 35 feet from the goal line, he shoots the puck directly at the goal. The angle of elevation at which the puck leaves the ice is 7°. The



height of the goal is 4 feet. Will the player score a goal?

Solution

Begin by finding the height h of the puck at the goal line. Use a trigonometric ratio.

$$\tan \frac{7}{a}$$
° = $\frac{\text{opp.}}{\text{adj.}}$ Write trigonometric ratio.

$$\tan \frac{7}{35}^{\circ} = \frac{h}{35}$$
 Substitute.

$$35$$
 tan $7^{\circ} = h$ Multiply each side by 35 .

 $35 (0.1228) \approx h$ Use a calculator.

 $4.3 \approx h$ Multiply.

Answer Because the height of the puck at the goal line (4.3 feet) is greater than the height of the goal (4 feet), the player will not score a goal.

Checkpoint Complete the following exercise.

3. A hockey player is 27 feet from the goal line. He shoots the puck directly at the goal. The height of the goal is 4 feet. What is the maximum angle of elevation at which the player can shoot the puck and still score a goal?

8.4°