MODULE 20 Triangle Congruence Criteria

LESSON 20-1

Practice and Problem Solving: A/B

- 1. ∠Q
- 2. \overline{PQ}
- 3. ∠Y
- 4. ∠N
- 5. \overline{XZ}
- 6. \overline{YX}
- 7.12
- 8.18
- 9.60°
- 10.24
- 11.60°
- 12.24

LESSON 20-2

Practice and Problem Solving: A/B

- 1. $\angle PQS \cong \angle RQS$; if these angles are congruent, then the triangles will be congruent by the ASA Congruence Theorem.
- 2. There is not enough information. Angle *VXW* is congruent to $\angle ZXY$ because they are vertical angles. $XV \cong XZ$ because X is the midpoint of VZ. If $\angle XVW \cong \angle XZY$, then the triangles are congruent by ASA.
- 3. No, side HJ does not correspond to side DE (and is not the included side of angles G and H), so the ASA Theorem does not apply.

4.	Statements	Reasons
	1. ∠ACD \cong ∠CAB	1. Given
	2. ∠BCA \cong ∠DAC	2. Given
	3. $\overline{AC} \cong \overline{CA}$	3. Reflexive Property of Congruence
	4. ∆ABC ≅ ∆CDA	4. ASA Triangle Congruence Theorem

5. Possible answer: Rotate ∆ABC 180° around point A, and then translate $\triangle ABC$ to the left.

LESSON 20-3

Practice and Problem Solving: A/B

- 1. Yes. The right angle of a right triangle is the included angle of the two legs. If both pairs of legs are congruent, the triangles are congruent by SAS.
- 2. No. If all three angle pairs are congruent the triangles will be similar but not necessarily congruent. If two pairs of sides are congruent and two nonincluded or non-corresponding angles are congruent, the triangles are not necessarily congruent.
- Possible answer: Two sides and the included angle of ΔABD (AD, ∠ADB, DB) are congruent respectively to two sides and the included angle of ΔCDB (BC, ∠CBD, DB), so the triangles are congruent by the SAS Triangle Theorem.
- 4. Possible answer: Rotate $\triangle ABD$ 180° around point *B*. Then translate $\triangle ABD$ down and left to map onto $\triangle CDB$

5.	Statements	Reasons
	1. C is the midpoint of \overline{AD} and \overline{BE} .	1. Given
	2. <i>AC</i> = <i>CD</i> , <i>BC</i> = <i>CE</i>	2. Definition of midpoint
	3. $\overline{AC} \cong \overline{CD}$, $\overline{BC} \cong \overline{CE}$	3. Definition of congruent segments
	4. ∠ACB ≅ ∠DCE	4. Vertical Angles Theorem
	5. ∆ABC ≅ ∆DEC	5. SAS Triangle Theorem

LESSON 20-4

Practice and Problem Solving: A/B

- 1. BD = FH = 6, so $\overline{BD} \cong \overline{FH}$ by definition of \cong segments. BC = FG = 8, so $\overline{BC} \cong \overline{FG}$ by definition of \cong segments. CD = GH = 9, so $\overline{CD} \cong \overline{GH}$ by definition of \cong segments. Therefore, $\Delta BCD \cong \Delta FGH$ by SSS.
- 2. Possible answer: Since $AB \cong AD$, 3x - 11 = x + 7. Solving for x, x = 9. Substituting the value of x into the expressions gives AB = AD = 16 and CB = CD = 13. Finally, CA = CA. So, the triangles are congruent by the SSS Congruence Theorem, and $\angle B \cong \angle D$ by CPCTC.
- 3. Possible answer: No. There are only two pairs of congruent sides between the two triangles ($\overline{HG} \cong \overline{HJ}$; $\overline{HK} \cong \overline{HK}$), so the triangles are not necessarily congruent. Therefore it cannot be determined whether $\overline{GK} \cong \overline{JK}$, which would have to be true if \overline{HK} is the perpendicular bisector of \overline{GJ} .

Nam

Date	
------	--

_____ Class____

4	Statements	Reasons
4.	1. $\overline{XY} \cong \overline{ZY}$	1. Given
	2. XO≅ZO	2. Radii of a circle are congruent.
	3. YO ≅ YO	3. Reflexive property of congruence
	4. VXYO ≅ VZYO	4. SSS Triangle Theorem
	5. $\angle X \cong \angle Z$	5. CPCTC