Activities  and Absences

 
Abstract
Background
The Study
Discussion
Conclusion
 
 

Extended Links

 

  Study

 

         The population of interest is the entire student body of NOHS, and the sample was a random drawing of 100 students. I used a random number generator from Minitab. From the randomly choosen students on the list, I went through each students schedule and picked a class, lunch or study hall they may be in to fill out the survery.

On the survery there were three questions:
1)Are you male or female?
2) Are you in any student activites (sports, clubs, academic teams...)
and how many are you in 0.. 1.. 2.. 3.. 4.. 5.. over 5
3) About how many absences have you had this whole year?(Days or partial days missed count the same! Refer to guidance or report cards). 0.1.2.3.4.5..over 5

β = The increase in days absent for each new activity.

Ho: β= 0
Ha: β ≠ 0

α=.05
Assumptions: samples are random, The distributon of e at any particular x value has mean value of 0 (µe=0), The standard deviation of e is σ, which does not depend on x, The distribution of e at any particular x value is normal, The random deviations associated with diffrenct observations are independent of one another.

Regression Analysis: Days Absent versus Number of Activities

The regression equation is
Days Absent = 3.944 + 0.0278 Number of Activities
 

Predictor             Coef      SE Coef       T        P
Constant           3.9437     0.2996       13.17    0.000
# of Activites    0.0278     0.1671        0.17    0.869


S = 1.47407   R-Sq = 0.1%   R-Sq(adj) = 0.0%

Analysis of Variance

Source               DF        SS         MS         F          P
Regression          1     0.060     0.060      0.03     0.869
Residual Error     40    86.916   2.173
Total                  41    86.976

Unusual Observations

      Number of      Days
Obs    Activities      Absent      Fit           SE Fit           Residual              St Resi
d
15        0.00              0.000           3.944          0.300            -3.944                  -2.73R
21        5.00              5.000           4.083          0.680             0.917                   0.70 X
27        1.00              1.000           3.972          0.229            -2.972                  -2.04R
29        1.00              0.000           3.972          0.229            -3.972                 -2.73R
32        2.00              1.000           3.999          0.267            -2.999                 -2.07R 

R denotes an observation with a large standardized residual.
X denotes an observation whose X value gives it large leverage.

 

 
 
Copyright © 2006 Sitename.com. Designed by Web Page Templates Terms of Use  |  Privacy Policy
 
Design downloaded from free website templates.